LOWER BOUNDS FOR COVERINGS OF PAIRS BY LARGE BLOCKS

D. T. TODOROV

Received May 10, 1986 Revised October 23, 1987

Let $n \ge k \ge t$ be positive integers, and X—a set of n elements. Let C(n, k, t) be the smallest integer m such that there exist m k-tuples of X B_1 , B_2 , ..., B_m with the property that every t-tuple of X is contained in at least one B_i . It is shown that in many cases the standard lower bound for C(n, k, 2) can be improved (k sufficiently large, n/k being fixed). Some exact values of C(n, k, 2) are also obtained.

Keywords: coverings, affine planes, projective planes.

1. Introduction

Let $n \ge k \ge t$ be positive integers, and let X be a set of n elements, i.e. |X| = n. A family $F = \{B_1, ..., B_m\}$ of k-tuples of X (subsets of X having k elements each) is called (n, k, t)-covering if every t-tuple of X is contained in at least one B_i . The elements of F are called blocks. C(n, k, t) denotes the smallest integer m such that there exists an (n, k, t)-covering F (called covering design, optimal covering etc.) having m blocks.

Let $\alpha \in X$, $G \subseteq F$. By $G(\alpha)$ denote the number of blocks in G containing α , i.e., $G(\alpha) = |\{B \in G : \alpha \in B\}|$. In the case G = F it is easy to see that $F(\alpha) \ge C(n-1, k-1, t-1)$ and then

(1)
$$C(n, k, t) \ge [nC(n-1, k-1, t-1)/k],$$

where [x] denotes the smallest integer that is at least x. Iterating (1) we obtain

(2)
$$C(n, k, t) \ge \left[\frac{n}{k} \left[\frac{n-1}{k-1} \right] \dots \left[\frac{n-t+1}{k-t+1} \right] \dots \right] = L(n, k, t),$$

which is the Schönheim lower bound for C(n, k, t) [1, 2]. There are many cases in which the lower bound (2) is actually achieved [1, 2, 3, 4, 7]. For example, the well known Turán's theorem [3, 4] gives C(n, n-2, t) = L(n, n-2, t). It was conjectured by Erdős and Hanani [11] and proved by Rödl [9] that for k, t fixed

(3)
$$\lim_{n \to \infty} C(n, k, t)/L(n, k, t) = 1.$$

It follows from the results of Kuzjurin [10] that (3) holds for t fixed and for arbitrary sequence k=k(n) with $\lim_{n\to\infty} k/n=0$. So, the lower bound (2) is a good approximation for C(n,k,t) when t is fixed. Some possibilities to improve (2) are studied in [5, 6]. It follows from (1) that if C(n-1,k-1,t-1)>L(n-1,k-1,t-1) then C(n,k,t)>L(n,k,t). So, the improvement of the Schönheim lower bound for t=2 leads to an improvement for arbitrary t. For t=2 and k fixed it seems that for all sufficiently large n we have C(n,k,2)=L(n,k,2) except the case $n\equiv 1\pmod{k-1}$ $n(n-1)\equiv 1\pmod{k}$ (Mills [5]). Here we consider some possibilities to improve the lower bound (2) for t=2 and for sufficiently large k.

Let F be an (n, k, 2)-covering and α , $\beta \in X$. Let $\operatorname{cl} \alpha = \{B \in F : \alpha \in B\}$, $F(\alpha, \beta) = = |\{B \in F : \{\alpha, \beta\} \subset B\}|$, Br $(\alpha) = \{\beta \in X : F(\alpha, \beta) > 1\}$. Clearly $F(\alpha) = |\operatorname{cl} \alpha|$. Since C(n-1, k-1, 1) = [(n-1)/(k-1)] then $F(\alpha) \geq [(n-1)/(k-1)]$. Denote $X_1 = \{\alpha \in X : F(\alpha) = [(n-1)/(k-1)]\}$, $X_2 = X \setminus X_1$. The elements of X_1 are called centres, and those of X_2 non-centres. A block $B \in F$ is said to be an i-block if $|X_2 \cap B| = i$. Since

$$k|F| = \sum_{\alpha \in X} F(\alpha)$$

then

(4)
$$|F| \geq (n[(n-1)/(k-1)] + |X_2|)/k.$$
Let $n-1=s(k-1)-j$, $0 \leq j < k-1$, $B \in F$, $B \cap X_1 = \{\alpha_1, ..., \alpha_r\}$. Denote
$$\omega(B) = \sum_{1 \leq i$$

For every, $\alpha \in X_1$ we have $F(\alpha) = s$, and $\varepsilon(\alpha) = s(k-1) - n + 1 = j$. Therefore

$$(5) 2\omega(B) \leq jr.$$

Note that if $2\omega(B)=jr$ then $Br(\alpha_i)\subset B\cap X_1$ for every i=1,...,r. Finally, denote by $SF(\alpha)$ the set of all $\beta\in X$ which are contained in excatly the same blocks of F as $\alpha(\alpha\in SF(\alpha))$.

2. The projective zone

It was proved in [6] that if q is a prime power, and $a_0 \ge a_1 \ge a_2 > 0$ are integers then for $k = a_0 q + a_1$, $n = a_0 q^2 + a_1 q + a_2$:

$$C(n, k, 2) = L(n, k, 2) = q^2 + q + 1.$$

The optimal coverings were obtained from the projective plane PG (2, q). It seems that the condition $a_0 \ge a_1 \ge a_2$ is essential. More exactly, we suppose that if $k \ge s+1$, $s < n/k \le s+1/(s+1)$ (the *projective* zone), and there exist no integers $a_0 \ge a_1 \ge a_2$ such that $k = a_0 s + a_1$, $n = a_0 s^2 + a_1 s + a_2$ then

(6)
$$C(n, k, 2) > L(n, k, 2) = s^2 + s + 1.$$

For s=2 (6) holds (see [5]). It will also hold for s=3 if C(28, 9, 2)>13 and C(41, 13, 2)>13 [5, 8]. The validity of (6) will give a number of exact values of C(n, k, 2) in the projective zone. For example, let q be a prime power. Consider a line $B=\{b_0, b_1, ..., b_q\}$ in PG (2, q) and substitute every point b_i , i=1, ..., q

with q new points $\{b_i^1, ..., b_i^q\}$. Replace B with two new blocks $B' = B \setminus \{b_1^1\}$, $B'' = B \setminus \{b_1^2\}$. Now substitute every point $a \notin B$ with q-1 new points. The lines in PG (2, q) are transformed into blocks of $(q^3+1, q^2, 2)$ -covering (some of them with cardinality less than q^2) which yields $C(q^3+1, q^2, 2) \le q^2+q+2$, and if (6) holds then $C(q^3+1, q^2, 2) = q^2+q+2$. Here we shall prove (6) in the following special case.

Theorem 2.1. If $n=s^2+as+1$, k=s+a, $s \ge a > 1$ then

$$C(n, k, 2) > L(n, k, 2) = s^2 + s + 1.$$

Proof. Suppose that there exists an (n, k, 2)-covering $F = \{B_1, ..., B_m\}$ with $m = s^2 + s + 1$. For $\alpha \in X_1$ we have $F(\alpha) = s + 1$, $\varepsilon(\alpha) = a - 1$, and from (4) $|X_2| \le a - 1$. Since

$$\sum_{\alpha \in X_1} F(\alpha) = k |F| - \sum_{\alpha \in X_1} F(\alpha) \le s^2 + s - 2$$

there exists a 0-block $B_1 \in F(B_1 \cap X_2 = \emptyset)$. From (5) $2\omega(B_1) \le (a-1)(s+a)$. On the other hand

$$2\omega(B_1) = \sum_{i=2}^m \omega_i(\omega_i - 1)$$

where $\omega_i = |B_1 \cap B_i|$, $i \ge 2$. Thus

$$2\omega(B_1) = \sum_{i=2}^m \omega_i^2 - \sum_{i=2}^m \omega_i = \sum_{i=2}^m \omega_i^2 - s(s+a).$$

Let $\overline{\omega} = \max_{i} \omega_{i}$, $\underline{\omega} = \min_{i} \omega_{i}$. The minimum of the last sum is achieved for $\overline{\omega} - \underline{\omega} \leq 1$, and consequently $\omega \geq 1$, $\overline{\omega} \leq 2$. So

$$\sum_{i=2}^m \omega_i^2 \ge 3as + s^2 - 2s.$$

Therefore

$$(7) (s+a)(a-1) \ge 2\omega(B_1) \ge 2s(a-1)$$

which result in a contradiction if a < s. If a = s (7) gives $2\omega(B_1) = 2s(s-1)$, $1 \le \le \omega_i \le 2$, $i \ge 2$, and $\operatorname{Br}(\alpha) \subset B_1$ for every $\alpha \in B_1$. Let $\xi \in B_1$, $\operatorname{cl} \xi = \{B_1, B_2, ..., B_{s+1}\}$. Since $\operatorname{Br}(\xi) \subset B_1$ and $|X_2| \le s-1$ then there is another 0-block in $\operatorname{cl} \xi$, say B_2 . According to the above $\operatorname{Br}(\xi) \subset B_1 \cap B_2$, $|B_1 \cap B_2| = 2$. Therefore $|\operatorname{Br}(\xi)| = 1$. Suppose that $\operatorname{Br}(\xi) = \{\eta\}$. Obviously $F(\xi, \eta) = s$ and let $\operatorname{cl} \eta = \{B_1, ..., B_s, B_{s+2}\}$. We have to cover the pairs $\{\eta, B_{s+1} \setminus \{\xi\}\}$ and then $B_{s+1} \setminus \{\xi\} = B_{s+2} \setminus \{\eta\}$ which yields $B_{s+1} \setminus \{\xi\} \subset X_2$ and consequently $|X_2| \ge 2s-1$, a contradiction.

3. The case
$$n-1 \equiv 0 \pmod{k-1}$$

The theorem below presents an extension of the [5, 6] results concerning the case $n-1\equiv 0\pmod{k-1}$. Since C(n,k,2), $n\leq 3k$ is completely known [5], then we shall assume that n>3k.

Theorem 3.1. Let n-1=s(k-1), s>3.

(A) If k>s then $C(n, k, 2) \ge s^2 + s - 2s(s-1)/k$.

(B) If $n(n-1) \equiv j \pmod{k}$, 1 < j < k, s < j(k-1)/(j-1) then

Proof. (A) Let $F = \{B_1, ..., B_m\}$ be an (n, k, 2)-covering with n, k satisfying the conditions of the theorem. Clearly $F(\alpha) = s$ for every $\alpha \in X_1$. It was shown in [6] (Theorem 1) that $|X_1| \le (s-1)^2$, or there exists a block $B \in F$ such that $X_1 \subseteq B$. In the first of these cases we have $|F| \ge (ns + n - (s-1)^2)/k = s^2 + s - 2s(s-1)/k$ due to (4). Now suppose that $X_1 \subseteq B_1$, $|X_1| > (s-1)^2$. Since $\varepsilon(\alpha) = 0$ for every $\alpha \in X_1$ then $\omega(B_1) = 0$ due to (5), and $|B_1 \cap B_i \cap X_1| \le 1$, $i \ge 2$. Thus $|F| \ge |X_1|(s-1) + 1 > (s-1)^3 + 1 > s^2 + s - 2s(s-1)/k$.

(B) If k>s then the assertion follows from (A). If s=k, k+1 then j=0. Therefore we can assume that $s \ge k+2$.

Let F be an (n, k, 2)-covering, |F| = L(n, k, 2). Since $n(n-1) \equiv j \pmod k$ then $s(s-1) \equiv j \pmod k$ and $|F| = \lceil ns/k \rceil = \lceil (s^2k - s(s-1))/k \rceil = (ns+j)/k$. Therefore $|X_2| \leq j$. Every pair (α, β) , $\alpha \in X_1$ is contained in exactly one block of F which yields $|X_2| \geq 2$ (if $X_2 = \{\omega\}$ then there is a pair (α, ω) with $F(\alpha, \omega) > 1$). Note that if j=1 this gives C(n, k, 2) > L(n, k, 2) [5]. In order to clear the idea of the proof for arbitrary j>1 first consider the case j=2. If $X_2 = \{\omega_1, \omega_2\}$ then $F(\omega_1) = s+1$, $F(\omega_2) = s+1$, $F(\omega_1, \omega_2) = k$. Hence there is a block B in cl ω_1 with $\omega_2 \notin B$. We have to cover the pairs (α, ω_2) , $\alpha \in B \setminus \{\omega_1\}$ in different blocks of cl $\omega_2 \setminus cl \omega_1$. So $s+1=F(\omega_2)=k+|cl \omega_2 \setminus cl \omega_1| \geq k+k-1=2k-1$, a contradiction. Thus we can assume that $j \geq 3$, which yields $s \geq k+3$ (if s=k+2 then j=2) and consequently $k \geq 4j-2$.

Let $|X_2| = p > 1$, and $\{\alpha_1, ..., \alpha_q\} \subseteq X_2$, $X_2 = \bigcup_{i=1}^q SF(\alpha_i)$, $SF(\alpha_i) \cap SF(\alpha_f) = \emptyset$, $1 \le i < f \le q$, $|SF(\alpha_i)| = \beta_i$, $F(\alpha_i) = s + x_i$, $x_i > 0$, i = 1, ..., q. Thus

$$\sum_{i=1}^{q} \beta_i = p \quad \text{and} \quad \sum_{i=1}^{q} x_i \beta_i = j.$$

Since $\varepsilon(\alpha)=0$ for $\alpha \in X_1$, and $|X_1|=s(k-1)+1-p$ then

(8)
$$\sum_{B \in \operatorname{cl}_{a}} |X_2 \cap B| = x_i k + s + p - 1.$$

Since $\sum_{B \in \operatorname{cl}\alpha_i} |X_2 \cap B| \ge (s+x_i)\beta_i + p - \beta_i$ then $\beta_i \le x_i$, i = 1, ..., q. Now consider $\operatorname{cl}\alpha_1$, and let B be a z-block in $\operatorname{cl}\alpha_1$. We shall prove that:

(9)
$$-z^2+z(2p-1) \ge (x_1-\beta_1)(4j-2)+3j-2p+\beta_1(p-1).$$

Let $\{\alpha_1, ..., \alpha_h\} \subseteq B \cap X_2$, $\sum_{i=1}^h \beta_i = z$, $F(\alpha_1, \alpha_i) = \omega_i$, i = 2, ..., h, $F(\alpha_1, \alpha_i) = y_i$, i = h+1, ..., q. We have to cover the pairs (α, α_i) , $\alpha \in B \cap X_1$, $i \ge h+1$ and since $\alpha_i \notin B$, $i \ge h+1$ then

$$(10) y_i \leq s + x_i - k + z.$$

Now:

$$\sum_{B\in\operatorname{cl}\alpha_1}|X_2\cap B|=\beta_1(s+x_1)+\sum_{i=2}^h\beta_i\omega_i+\sum_{i=h+1}^q\beta_iy_i,$$

and combining with (8) and (10) we get

(11)
$$\sum_{i=2}^{h} \beta_{i} \omega_{i} \geq x_{1} k + s + p - 1 - \beta_{1} (s + x_{1}) - (p - z)(s + z - k) - \sum_{i=h+1}^{q} x_{i} \beta_{i}.$$

On the other hand if $\alpha_i \notin B_f$ $(B_f \in \operatorname{cl} \alpha_1)$ then $|B_f \cap X_1| \leq s + x_i - \omega_i$, i.e. $|B_f \cap X_2| \geq k - (s + x_i - \omega_i)$. Hence $k - (s + x_i - \omega_i) \leq p - \beta_i$ which yields

(12)
$$\beta_i \omega_i \leq \beta_i (s+p-k+x_i-\beta_i), \quad i=2,...,q.$$

Summing (12) over $i=2, ..., \alpha$ and using that

$$\sum_{i=2}^h \beta_i = z - \beta_1, \quad \sum_{i=2}^n \beta_i^2 \ge z - \beta_1$$

we obtain

(11) and (13) give

$$-z^2+z(2p-1) \ge k(p+x_1-\beta_1)-(p-1)(s-\beta_1-1)-j.$$

Using that s < j(k-1)/(j-1), and $k \ge 4j-2$ we obtain (9). It follows from (9) that there are no 1-blocks in F, i.e. z > 1.

Let $x_1 = \min_i x_i$. We shall prove that every block in $\operatorname{cl} \alpha_1$ contains at least $x_1 + 1$ non-centres. The maximal value p(p-1) of the left side in (9) is achieved for z = p, p-1. Using in addition that $\beta_1 \le p$ we get $x_1 \le p-1$. Now suppose that there exists a z-block in $\operatorname{cl} \alpha_1$ with $z \le x_1$. Since $z \le x_1 \le p-1$ we can substitute z by x_1 in (9). This gives

(14)
$$x_1 p \ge (x_1 - \beta_1)(4j - p - 1) + 3j - 2p + x_1^2.$$

Since $x_1 = \min x_i$ then $j \ge x_1 p$ and (14) is impossible. Thus for every z-block in cl α_1 $z \ge x_1 + 1$. If in addition $z \ge x_1 + 2$ then

$$\sum_{B \in \operatorname{cl} \alpha_1} |X_2 \cap B| \ge (x_1 + 2)(s + x_1)$$

which is impossible due to (8). So, there exists a (x_1+1) -block in $cl \alpha_1$ and from (9) $(z=x_1+1)$:

$$x_1 p \ge (x_1 - \beta_1)(4j - p - 1) + 3j - 4p + 1 + (x_1 + 1)^2$$

which shows that $x_1=1$ (if $x_1\ge 2$ then $p\le j/2$ since $x_1p\le j$). Therefore $\beta_1=1$ ($x_1\ge \beta_1$). Suppose that $B_1\in \operatorname{cl}\alpha_1$ is a 2-block and $B_1\cap X_2=\{\alpha_1,\alpha_2\}$. Hence $\beta_2=1$ and since there exists a 2-block in $\operatorname{cl}\alpha_2$ then we can make use of (9) substituting x_1 by x_2 , β_1 by 1, z by 2. Thus $0\ge (4j-2)x_2-5p-j+7$ and consequently $x_2=1$.

The next step is to show that there are 2-blocks in cl α_1 with different non-centres. Denoting the number of 2-blocks in cl α_1 by τ we have $2\tau + 3(s+1-\tau) \le$

 $\leq k+s+p-1$. Therefore

$$\tau \ge 2s - k - p + 4 > 0.$$

Suppose that every 2-block in cl α_1 contains α_2 . This gives $F(\alpha_1, \alpha_2) \ge 2s - k - p + 4$ due to (15). Thus if $B \in \text{cl } \alpha_1 \setminus \text{cl } \alpha_2$ then $|B \cap X_1| \le s + 1 - F(\alpha_1, \alpha_2) \le k - s + p - 3$ (we have to cover the pairs $(\alpha, \alpha_2), \alpha \in B \cap X_1$). Therefore $|B \cap X_2| \ge k - (k - s + p - 3) > p$, a contradiction.

Suppose that B_0 , B_1 are 2-blocks in $\operatorname{cl} \alpha_1$, $\{\alpha_1, \alpha_2\} = B_1 \cap X_2$, $\{\alpha_1, \alpha_3\} = B_0 \cap X_2$. The pairs (α, α_2) , $\alpha \in B_0 \cap X_1$ are covered in different blocks of $\operatorname{cl} \alpha_2 \setminus \operatorname{cl} \alpha_1$. Hence

(16)
$$F(\alpha_1, \alpha_2) \le s+1-(k-2) = s-k+3 \le p.$$

The last inequality in (16) follows from (8) and from the fact that every block in cl α_1 contains at least 2 non-centres, i.e. $2(s+1) \le k+s+p-1$.

Let $\alpha \in B_1 \cap X_1$ and let $B_1, ..., B_r$ be *i*-blocks $(i \ge 2)$ of cl α (there are no 1-blocks in F). Obviously $2 \le r \le p/2$. Let cl $\alpha_1 = \{B_1, B'_2, ..., B'_{s+1}\}$. Denote

$$G = \{B_1' \in \operatorname{cl} \alpha_1 \colon B_i' \cap B_f \cap X_1 \neq \emptyset, f = 2, ..., r\}.$$

If $B_i' \in G$ then $B_i' \cap X_2 = \{\alpha_1, \alpha_2\}$ since in the opposite case we can find a pair (x, y), $x \in X_1$, $y \in X_2$ which is covered twice. Thus $F(\alpha_1, \alpha_2) \ge |G| + 1$. Let $w_i = |B_i \cap X_2|$, i = 2, ..., r. Therefore

$$|G| \ge s - \sum_{i=2}^{r} (s - (k - w_i - 1)) = s - (r - 1)(s - k + 1) - (p - 2) \ge$$

$$\ge -(r - 2) j(k - 1)/(j - 1) + (r - 1)(k - 1) - j + 2 > j + 6.$$

Thus $F(\alpha_1, \alpha_2) \ge j+8$ which contradicts (16).

There are many values of n, k satisfying the conditions of Theorem 3.1 (B). For example n=(k+m)(k-1)+1, $k>m(m^2-2)$, $m\ge 2$.

For sufficiently large k Theorem 3.1 (A) gives sometimes the best possible.

Corollary 3.2. Let q be a prime power, n-1=q(k-1), q>3, k=qr, k>2q(q-1). Then for $n \le n' \le q^2r$ we have

$$C(n', k, 2) = C(n, k, 2) = L(n, k, 2) + q = q^2 + q.$$

Proof. Since q is a prime power then there exists an affine plane AG (2, q). AG (2, q) is an optimal $(q^2, q, 2)$ -covering having q^2+q blocks (the lines in AG (2, q)). Since $C(nf, kf, t) \le C(n, k, t)$ [5] and $C(n, k, t) \le C(n', k, t)$ for $n \le n'$ then

$$C(n, k, 2) \le C(n', k, 2) \le C(q^2r, qr, 2) \le C(q^2, q, 2) = q^2 + q.$$

The opposite inequalities follow from Theorem 3.1 (A).

4. Coverings by large blocks

Let n-1=q(k-1)-j, 0< j< k-1, q>2 and let $F=\{B_1,...,B_m\}$ be an (n,k,2)-covering over an n-element set X. Clearly for every $\alpha \in X_1$ $F(\alpha)=q$, $\varepsilon(\alpha)=j$. The following lemmas are useful establish lower bounds for C(n,k,2) for sufficiently large values of k.

Lemma 4.1. Let $B \in F$, $q > i \ge 0$, $|X_1 \cap B| > (j+1)(q+i-1)$, k > (j+1)(q+i), and $\xi \in X \setminus B$. Then $F(\xi) > q+i$.

Proof. Suppose that $F(\xi)=q+s$, $s \leq i$, $\operatorname{cl} \xi = \{B_1, ..., B_{q+s}\}$. Since $|B_r \cap B \cap X_1| \leq j+1$, $r \leq q+s$ and $|X_1 \cap B| > (j+1)(q+i-1)$ then $B_r \cap B \cap X_1 \neq \emptyset$ for every r=1, ..., q+s. On the other hand k > (j+1)(q+i), $B \subset \bigcup_{r=1}^{q+s} B_r$ and then we can assume that $|B_1 \cap B| > j+1$. Hence $B_1 \cap B \cap X_1 = \emptyset$, a contradiction.

We shall say that $B \in F$ is a maximal block if $|B \cap X_1| \ge |B_i \cap X_1|$ for every other block $B_i \in F$.

Lemma 4.2. Let $B \in F$ be a maximal block. Let i be integer, q > i > 0, k > (j+1)q and $|B \cap X_1| > (j+1)(q-1) - ij(j+1)$. Suppose that there exists an element $\xi \in X_1 \setminus B$, $cl \xi = \{B_1, ..., B_i, ..., B_g\}$ such that $|B_r \cap B \cap X_1| = j+1, r=1, ..., i$. Then

$$|X_1| \subseteq (j+1)(iq-2i+q-1).$$

$$(j+1)(q-1-i(j+1)) \ge |(B\cap X_1)\setminus \bigcup_{r=1}^{i} B_r)| > (j+1)(q-1)-ij(j+1)-i(j+1)$$

which is a contradiction. Thus $X_1 \subseteq M$ and

$$|X_1| \le (i+1)(j+1)(q-1) - i(j+1) = (j+1)(iq-2i+q-1).$$

Further on, denote $\omega = \lceil (j+1)/2 \rceil + 1$. Let $B \in F$ be a maximal block and $\xi \in X_1 \setminus B$, cl $\xi = \{B_1, ..., B_q\}$, $B_i^{\xi} = B_i \cap B \cap X_1$, i = 1, ..., q. Let $m(\xi)$ be the number of those B_i^{ξ} for which $|B_i^{\xi}| \ge \omega$. We assume that $|B_i^{\xi}| \ge \omega$ for $i = 1, ..., m(\xi)$. Now if $1 \le r_1 < r_2 \le m(\xi)$ then $B_{r_1}^{\xi} \cap B_{r_2}^{\xi} = \emptyset$ (if $\eta \in B_{r_1}^{\xi} \cap B_{r_2}^{\xi}$ then $\varepsilon(\eta) > j$ and consequently $\eta \in X_2$). So, every centre $\xi \in X_1 \setminus B$ defines $m(\xi)$ disjoint subsets of $B \cap X_1$ with cardinality $\ge \omega$. Denote $A(\xi) = \{B_1^{\xi}, B_2^{\xi}, ..., B_{m(\xi)}^{\xi}\}$. Clearly if $B_i^{\xi} \in A(\xi)$, $B_i^{\xi} \in A(\eta)$ then either $B_i^{\xi} = B_i^{\xi}$ or $B_i^{\xi} \cap B_i^{\xi} = \emptyset$ due to the choise of ω . Let $m^* = \min\{m(\xi): \xi \in X_1 \setminus B\}$ and

$$\bigcup_{\xi \in X_1 \setminus B} A(\xi) = \{S_1, ..., S_f\}, S_i \subset B_i, \quad i = 1, ..., f, G = \{B_1, ..., B_f\}.$$

Lemma 4.3. Let $|X_1 \cap B| = \alpha q + \beta \ge q(\omega - 1) + 1$, $0 \le \beta < q$, $X_1 \setminus B \ne \emptyset$, B being a maximal block. Then

$$|X_1| \le \min \{n - q(k - \alpha q - \beta) + j - \varrho + 1, d(\alpha, \beta)\},$$

where $\varrho = \max_{\gamma, \delta x \in X_1} F(\gamma, \delta), d(\alpha, \beta) = ((m^* + f)(\alpha q + \beta) - f\tau)/m^*, \tau = \max \{\omega, \alpha\}.$

Proof. Obviously $G(\xi) \ge m^*$ for every $\xi \in X_1 \setminus B$ $(G(\xi)$ denotes the number of blocks of G containing ξ) and since $|X_1 \cap B| \ge q(\omega - 1) + 1$ then $m^* > 0$. Therefore

$$|X_1| \leq \alpha q + \beta + \frac{1}{m^*} \left(\sum_{i=1}^f (\alpha q + \beta - |S_i|) \leq d(\alpha, \beta).$$

Now consider $\gamma, \delta \in X_1$, $F(\gamma, \delta) = \varrho$, and $\operatorname{cl} \gamma = \{B_1, ..., B_q\}$. Clearly $|B_i \cap X_2| \ge k - \alpha q - \beta$ and then

$$|X_1| \le n - q(k - \alpha q - \beta) + j - \varrho + 1.$$

The theorem below shows how to use the above lemmas.

Theorem 4.4. Let q > 5, $j^2 \ge q - 1$, $k \ge (j+1)(q^2 - q + 1)$. Then

$$|F| \ge L(n, k, 2) + q = q^2 + q.$$

Proof. First suppose that $|X_1 \cap B| > (j+1)q$ for some $B \in F$. Lemma 4.1 (i=1) gives $F(\xi) \ge q+2$ for every $\xi \in X \setminus B$, and then

$$|F| \ge (nq+2(n-k))/k \ge q^2+q.$$

Thus, if $X_1 \subseteq B$ for some $B \in F$ then $|X_1| \le (j+1)q$ and then

$$|F| \ge \lceil (n(q+1) - (j+1)q)/k \rceil \ge q^2 + q.$$

Now suppose that $|B \cap X_1| \le (q-2)j$ for every $B \in F$. This gives $|X_1| \le q(q-2)j-q+1$ and consequently $|F| \ge q^2+q$.

Finally suppose that B is a maximal block of F, $|B \cap X_1| \ge (q-2)j+1$ and there exists a centre $\xi \in X_1 \setminus B$. Let $\text{cl } \xi = \{B_1, ..., B_q\}$. Since k > (j+1)q we can suppose that $B_q \cap B \cap X_1 = \emptyset$ (see the proof of Lemma 4.2). We distinguish two cases.

(a) $|B_h \cap B \cap X_1| = j+1$ for some $h \le q$. Here $|X_1| \le (j+1)(2q-3)$ due to Lemma 4.2 and $|F| \ge [(n(q+1)-(j+1)(2q-3))/k] \ge q^2+q$.

(b) $|B_i \cap B \cap X_1| \leq j, i=1, ..., q-1$. Therefore $|B \cap X_1| \leq (q-1)j$. It is easy to see that we can make use of Lemma 4.3 (the case $|X_1| \leq d(\alpha, \beta)$) substituting m^* by q-4, f by q-1, $\alpha q+\beta$ by j(q-1), τ by ω . Thus $|X_1| \leq \{(2q-5)(q-1)j-(q-1)\omega\}/(q-4)$ and again $|F| \geq q^2 + q$.

Corollary 4.5. Let $n=q^2r-h, q>5, 0 \le h \le i, i \ge q-1+\sqrt{q}-1,$

$$k = qr \ge (i-q+2)(q^2-q+1),$$

and let q be a prime power. Then

$$C(n, k, 2) = q^2 + q.$$

Proof. We have $C(q^2r-h, qr, 2) \ge C(q^2r-i, qr, 2)$. Since $(i-q+1)^2 \ge q-1$, $q^2r-i-1=q(k-1)-(i-q+1)$, and $k \ge ((i-q+1)+1)(q^2-q+1)$ we obtain

$$C(q^2r-i,qr,2) \ge q^2+q$$

due to Theorem 4.4. On the other hand there exists an affine plane AG (2, q), whence

$$C(q^2r-h, qr, 2) \le C(q^2r, qr, 2) \le C(q^2, q, 2) = q^2+q.$$

References

- [1] J. Schönheim, On coverings, Pacific J. Math., 14 (1964), 1405—1411.
- [2] J. Schönheim, On maximal systems of k-tuples, Studia Sci. Math. Hung., 1 (1966), 363-
- [3] P. Turán, Egy gráfelméleti szélsőérték feladatról, Mat. Fiz. Lapok, 48 (1941), 436-452.
- [4] W. H. Mills, Covering problems, Proc. of the Foueth. South. Conf. on Comb., Graph Theory and Comp., Florida Atlantic University, Boca Raton, Florida (1974), 563-581.
- [5] W. H. MILLS, Covering designs I: Coverings by a small number of subsets, Ars Combinatoria, 8 (1979), 199-315.
- [6] D. T. Todorov, Some coverings derived from finite planes, Coll. Math. Soc. János Bolyai, 37 (1981), 697—710.
- [7] D. T. TODOROV, A method for constructing coverings, Math. Notes, 35 (1984), 869—876. [8] D. T. TODOROV, On the covering of pairs by 13 blocks, C.R. Bulg. Acad. Sci., 38 (1985), 691—
- [9] V. RÖDL, On a packing and covering problem, Europ. J. Comb., 5 (1985), 69-78.
- [10] N. N. Kuzjurin, Asymptotic research of the covering problem, Cybernetic problems, 37 (1980), 19-56.
- [11] P. ERDŐS and H. HANANI, On a limit theorem in combinatorial analysis, Publ. Math. Debrecen, 10 (1963), 10-13.

Dobromir T. Todorov

Department of Mathematics K. Marx-Institute of Economics 1100 Sofia Bulgaria